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J. Phys. A: Math. Gen. 14 (1981) 1237-1259. Printed in Great Britain 

On the structure of equations integrable by the 
arbitrary-order linear spectral problem 

B G Konopelchenko 
Institute of Nuclear Physics, 630090 Novosibirsk, USSR 

Received 13 August 1980 

Abstract. The general form of partial differential equations integrable by the arbitrary- 
order linear spectral problem is found. The groups of Backlund transformations cor- 
responding to these equations are constructed. It is shown that partial differential equations 
of the class under study are Hamiltonian ones. Some reductions of general equations are 
considered. In particular, the Hamiltonian structure of the generalisations of the sine- 
Gordon equation to the groups G L ( N ) ,  SU(N) and SO(N)  at arbitrary N is proved. 

1. Introduction 

The inverse spectral transform (IST) method allows a comprehensive study of a great 
number of various partial differential equations (see e.g. Scott et a1 (1973), Calogero 
(1978), Bullough and Caudrey (1980)). The general scheme of this method was 
discussed in Zakharov and Shabat (1974a,b) and Zakharov and Mikhailov (1978). 

All the differential equations to which the IST method is applicable are united in the 
classes of equations integrable by the same linear spectral problem. A simple and 
convenient description of the class of equations which are integrable with the help of the 
second-order linear (in the spectral parameter) spectral problem was presented in 
Ablowitz et al (1974). This class of equations is characterised by the ( n  - 1)th arbitrary 
function (n  is the number of independent variables) and by a certain integro-differential 
operator (Ablowitz et  a1 1974, Calogero and Degasperis 1976). Analogous results were 
obtained for the class of equations which are associated with the matrix stationary 
Schrodinger equation (Calogero and Degasperis 1977), the general linear spectral 
problem of arbitrary order (Newel1 1979, Kulish 1979, Konopelchenko 1979a), with 
the second-order linear problem quadratic in its spectral parameter (Gerdjikov et a1 
1979) and with the general arbitrary-order linear spectral problem polynomial with 
respect to the spectral parameter (Konopelchenko 1979b). Within the framework of 
this approach the wide classes of Backlund transformations (BTS), which play a 
significant role in a study of nonlinear differential equations, have also been found 
(Calogero and Degasperis 1976, 1977, Konopelchenko 1979a,b). For equations 
integrable by the second-order linear problem, the Hamiltonian structure of all the 
equations of this class is analysed (Flaschka and Newell 1975). 

In the present paper we are going to study a class of partial differential equations 
connected with the general linear spectral problem of arbitrary order: 

d$/ax = ( ihA  +iP(x, t, . . .))$ (1.1) 
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1238 B G Konopelchenko 

where A is the spectral parameter, A the constant diagonal matrix (Alk = arsrk,  a ,  f ak,  
i, k = 1, . . . , N )  and the 'potentials' P(x ,  t, . . .) are N x N matrices. It is not assumed 
here, in contrast to Newell (1979) and Konopelchenko (1979a), that P,, = 0 (i = 
1, * . . ,  N ) .  

We find the general form of equations integrable by means of equation (1.1) and 
construct the Backlund transformations corresponding to these equations. As will be 
seen, BTS and integrable equations are closely connected with the group of trans- 
formations conserving the form of the spectral problem (1.1). 

It is shown in this paper that the equations integrable with the help of equation (1.1) 
are Hamiltonian ones, both in the general case and in the cases when the 'potentials' 
satisfy the relations P' = P and PT = -P. The case of the singular dispersion law is also 
studied. Among such equations there are the relativistic-invariant equations coinciding 
with the non-Abelian generalisations of the sine-Gordon equation (Budagov and 
Takhtajan 1977, Budagov 1978), which, as is known, are gauge equivalent to the 
equations of the principal chiral field (Budagov 1978, Zakharov and Mikhailov 1978). 
The Hamiltonian structure of these equations for the groups GL(N), SU(N) and SO(N) 
with arbitrary N is proved. For all equations considered in this paper, uniqueness of the 
symplectic structure occurs (similarly to the case N = 2  (Magri 1978, Kulish and 
Reiman 1978)). 

We mainly use the compact matrix notation proposed in Newell (1979). Let us 
recall it: for an arbitrary matrix Q the matrices QF and QD are determined as follows: 

( Q F ) r k  = Q,k for i f k (i, k = 1, . . . , N ) ,  ( Q F I I 1  = 0 ( i  = 1, . . . , N ) ,  

( Q D ) , k  = 0 for i # k (i, k = 1,. . . , N ) ,  ( Q D ) , ,  = Q,, ( i  = 1, . . . , NI. 

The matrix QR is given by the relation [A,  Q R ]  = Q, i.e. 

( i  # k ;  i, k = 1, . . . , N ) .  
1 

a,  - a k  
(QR ) rk = -- Qlk 

The paper is organised as follows. The form of transformations of the transition 
matrix and potentials P conserving the spectral problem (1.1) is found in Q 2. The way 
in which the integrable equations and Backlund transformations are connected with 
these transformations is shown in 8 3. The equations with singular dispersion law and, 
in particular, the relativistic-invariant equations are considered in 8 4. The fifth section 
is devoted to the Hamiltonian structure of integrable equations with P E algebra GL(N) 
and P E  algebra SU(N). 

Equations with PT = -P are examined in Q 6 .  Their Hamiltonian structure is proved 
in the last, seventh section. In particular, the Hamiltonian structure of the generalisa- 
tion of the sine-Gordon equation to the group SO(N)  with arbitrary N is proved, and 
the explicit form of the Hamiltonian is found. 

2. The group of transformations conserving the linear spectral problem 

Let us examine an arbitrary transformation P + P ' ,  $ + $ I ,  which conserves the 
mapping P(x ,  t ) o  $ ( x ,  t, A )  given by the set of linear differential equations (1.1). 

It is easy to see that 

$ ' - - 4 K = -  i$ IXm dy $-'(PI - P)$' (2.1) 
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where the constant matrix K is determined by the asymptotic properties of the matrix 
solutions 4. 

It is assumed that P(x,  t, . . .) + 0 as 1x1 +CO?. Then I)  + E = exp(iAAx) as 1x1 + 00. 

Let us introduce, following Zakharov and Manakov (1975), fundamental matrix 
solutions F', F -  with asymptotics F*+E as x +*CO and the transition matrix 
S :  F+(x, t, A )  = F-(x,  t, A ) S ( A ,  t ) .  

Setting I)  = F' and going to the limit x + -CO in equation (2.1), we obtain 

Formula (2.2), which relates a change of the potentials P to a change of the transition 
matrix, is a basis for our further discussion. 

Let us suppose that the transition matrix at P + P' ,  (J + $' is transformed as 

s + S' = B-'SC (2.3) 

where B and C are diagonal matrices independent of the variable x. Rewriting 
equation (2.3) in the form S t -  S = (1 - B ) S ' -  S(l-  C) and comparing it with equation 
(2.2), we have 

(2.4) 

cm 

{S-l(l  -B)S ' }D  - 1 + C = -i dx {F"(P'-- P)F:}D. (2.5) I, 
It follows from formulae (2.4) and (2.5) that transformations (2.3) are given by the 

Taking into account the relation 
matrix B which can be arbitrary. Matrix C is determined by equality (2.5). 

d 
d X  

+m 

{S-l(l  -B)S ' }  F --I, - dx-{F' l ( l -B)F'}F 

+m 

dx {F'l[P(l -B)-(1 -B)P ']Fl}F = i  I, 
we obtain 

tm 

dx {Fil(BP' - P B ) F : } ~  = 0. I, 
+ + 

Rewriting equation (2.6) by components and introducing the notation @!7) = 
(F")ik(F:)ln, We have (Bik(h)  = Bi(A)Sik) 

( i  # II ; i, n = 1, . . . , N ) .  (2.7) 

Formula (2.7) contains the product B(A)cp"" ' (A)  which is given in a local manner, at 
each point A of the bundle (1.1). The spectral problem (1.1) makes it possible to 

t The case P ( x ) + P o  as ~ x ~ + ~ ,  where Pd is the constant diagonal matrix, is reduced to this by the 
transformations CL + exp(-iPox)$ and P+ exp(-iPox)(P -Po)  exp(iP0x). 
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transform this local product into the global product determined already on the whole 
bundle. 

As shown in appendix 1, in a space which covers all the non-diagonal quantities 
++ 
@(&'I (i # n,  k # 1 ;  i, k, 1, n = 1, . . , , N ) ,  the relation 

++ ++ 
9 i # n ; i , n = l , .  . * , N ,  hR@p) = AGp' 

(2.10) 

By virtue of this, equality (2.7) may be written as (one must extract the contribution of 

diagonal quantities 6:;) and take into account equation (A1.3)) 
*+ 

where 
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Formula (2.12) is a relation between F', F:, P and P' in the transformations 
conserving the spectral problem (1.1). Equality (2.12) is satisfied, if the expression in 
parentheses is equal to zero. Hence, the transformations P + P' conserving equation 
(1.1) are of the form 

({Bk(Af;)}mnkiPhAk -{Bi(AA))mnkipkiAi) = 0 ,  m f n ;  m, n = 1 , .  . . , N. 
k,l  

( k # l )  

(2.14) 

Recall that Bk(h) are arbitrary entire functions. 
Transformation properties of the transition matrix are determined by formula (2.3). 

The transformation law of S can be represented in a more explicit form. Let us write out 
equation (2.2) as 

s' -s  = -iSI+S{S-'(I - B ) s ' } ~  (2.15) 

where 
+m 

dx {FZ1(P'  - P)F:}D. I = I, 
Taking into account the relation (see appendix 1) 

++ ++ ++ 
(A, - A ) G ( ? )  = { P T F ( x ) A ( + ~ ) A - ~ ( x ) S " ~ -  A(+co)A-'(x)S""P~~(X)},  

we have 

Inn = I-, dx Tr[(Pk-PT)(AR -h)-l(PTFR(~)A(+w)A-l(~)Snn 
++ +a2 

++ 
- h ( + w ) A - ' ( x ) 6 n n P k ~ ~ ( ~ ) ) ]  

++ +a 

+ I-, dx Tr{ (Pk(x) - P T ( x ) ) [  A ( + ~ o ) A - ' ( x ) b " "  

(2.16) 

(2.17) 

Hence, transformation of the elements of the transition matrix is determined by the 
following relation: 

5: ( f i i i -  c s i k ( s - ' ) k i ( 1 - & )  S L = U - ~ L ) S ~ ~ ,  i , n = l ,  . . . ,  N, (2.18) 
k # n  

where Inn is given by formula (2.17). 
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The fairly complex transformation law becomes simple, if the following equalities 
are satisfied: 

iInn = I -B,, --{S-’(l -B) s ’}~~ ,  n = 1 , .  . . , N, (2.19) 
i.e. 

C=B.  (2.20) 
In this case, 

s .+ si = B-‘SB. (2.21) 

It should be mentioned that the diagonal elements of the matrix S are invariant 
under the transformations (2.21). In the general case of equation (2.3) 

S n n  .+ S l n  = ( C n / B n ) S n n  ( n  = 1, . * . , N ) .  (2.22) 

The set of all transformations of the form (2.14) is given by the set of all diagonal 
matrices B(A).  Therefore, just like the set of diagonal matrices, transformations (2.14) 
(conserving the spectral problem (1.1)) form the infinite-dimensional Abelian Lie 
group B, the ‘parameters’ of which are arbitrary functions BI(A) (1 = 1 , .  . . , N ) .  

3. The general form of integrable equations and Backlund transformations 

3.1. 

The infinite-dimensional group B of transformations (2.14), under which the spectral 
problem (1.1) is invariant, contains transformations of various types. Let us examine 
the one-parameter subgroup of the group B, which is given by the matrix 

B(A)  =exp[-i(t’-t)Y(A)] (3.1) 

where Y(A) is an arbitrary diagonal matrix (and C = B). As is easy to see, this group is a 
group of time displacements: 

S(A, t )+S’(A,  t)=exp[i(t’-t)Y(A)]S(A, t )  exp[-i(t’-t)Y(A)]=S(A, t’) .  (3.2) 

Inversion of the mapping P(x ,  t )  +D S ( h ,  t )  induces the corresponding transformation 
P(x ,  t )  + P’(x, t )  = P(x,  t’) .  It is of the form 

{exP[-i(l’- t )  Yk(A~)l}mnklPkl(-~, t’)& --E iexP[--i(t’- t )  y!(Ai)]}mnk/pkl(x, t)A! = 0. 
k, l  k,l 

(3.3) 

Operators A i  are given by formula (2.13), in which one should put P‘(x ,  t )  = P ( x ,  t’) .  
For the case N = 2, relations of such a type were found in Calogero and Degasperis 
(1976, 1977). 

Formula (3.3) determines inexplicitly the evolution of P(x, t )  in time t : P(x, t )  + 
P ( x ,  t’). Let us consider the infinitesimal displacement t + t’ = t + E ,  E + 0: 

P ( x ,  r )  .+ P(x, t + F )  = P(x, t )  + F aP(x, t ) / a t .  

Then from equation (3.3) we obtain partial differential equations 

(in # y1; m, n = 1, . . . , N )  (3.4) 
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where Lc = A+(P’ = P) ,  i.e. 

Correspondingly, 

dS(h, t) /dt  = i[ Y(h), S(A, t ) ] .  

(3.5) 

Partial differential equations (3.4) are just the equations integrable by the inverse 
scattering method with the help of the linear spectral problem (1.1). Using the IST 

method equations (Gelfand-Levitan-Marchenko equations), one can find a broad class 
of solutions of equations (3.4) (multi-soliton solutions). At N = 2 and PO = 0 we have 
the equations studied in Ablowitz et a1 (1974). Some concrete equations of the (3.4) 
type with N 2 3 are well known. The model of resonantly interacting wave envelopes 
(Zakharov and Manakov 1975, Ablowitz and Haberman 1975, Kaup 1976) cor- 
responds to linear functions Y/(A) ( Yl(h) = Y/A, 1 = 1, . . . , N )  and the multi-component 
nonlinear Schrodinger equation (Manakov 1975) corresponds to quadratic functions 
Y l ( h )  ( Y l ( h )  = Ylh2). Equations of the type (3.4) for Y/(A) = Y L 1  will be examined in 
the next section. 

A broader class (than equation (3.4)) of integrable equations appears, if P (as in the 
case N = 2  (Calogero and Degasperis 1976)) depends, in addition to t, on a few 
variables y of time type. Examining the t- and y (SP = E (aP/at + H(A, t, y)  @/ay))- 
infinitesimal displacement, we obtain from equation (2.14) 

Thus the class of equations integrable by means of the linear spectral problem (1.1) 
is characterised by the integro-differential operator LA and N + n - 3 arbitrary 
functions H ( h ,  t, y), Yl(h, t, y ) -  Yk(h, t, y )  (1, k = 1 , .  . . , N )  ( n  is the number of 
independent variables). 

In the particular case 

Y(h) = n(A)Y, 

where Y is a constant diagonal matrix and a(A) an arbitrary function, equations (3.4) 
may be written out in the compact form 

apF --i-i[PF, r]F-iaF(LA)[Y, PF]=O, 
a t  

or 
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3.2. 

Let us now turn our attention to the fact that, by virtue of equation (3.2) (or (3.6)) the 
diagonal elements of the transition matrix are time independent: 

dSD(A)/dt = 0. (3.10) 

Hence, S,,(A) (n  = 1, . , . , N )  are the generating functionals of the integrals of motion. 
Expanding In SD(A) ,  as usual, in a series of A-', 

(3.11) 

we obtain the infinite series of the integrals of motion {C'"', n = 0,  1,2 ,  , . . , CO} (C'"' are 
the diagonal matrices with elements CL), m = 1, . . . , N ) .  Expressions for C'") in terms 
of P(x, t )  may be found through the use of the procedure proposed in Zakharov and 
Manakov (1975). Let us present here its somewhat modified form. 

Let us represent the fundamental matrix Ft as follows: 

(3.12) 

where E is the asymptotic of the linear problem ( l . l ) ,  x( y, A )  the diagonal matrix, and 
the matrix R satisfies the condition RD = 1. From equation (3.12) we have 

+m 

InSD(A)= dyX(Y,A). I-, 
Substituting equation (3.12) into equation ( l . l ) ,  we find 

dR/ax + i A  [R, A] - RX - iPR = 0. 

Expanding x and R in asymptotic series of A- ' ,  

" 1  
n = i  A 

R(x, A )  = 1 + 1 y R'")(x), 

(3.13) 

(3.14) 

(3.15) 

we obtain the recurrence relations 

- i[A, R'"] = iP + x"). 
It follows from equation (3.16) that 

(3.16) 

x ( O )  = -ipD, x'd = -i(PR g)),, n = 1 , 2 , .  . . , (3.17) 

and R !L" are determined from the recurrence relations 

(3.18) 
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Formulae (3.17) and (3.18) enable us to calculate all integrals of motion, which, by 
virtue of equations (3.11) and (3.15), are 

(3.19) 

Note that for all equations of the class (3.4) the integrals of motion C ( n )  are of the same 
form, with an accuracy of the concrete reductions of P. 

3.3. 

Each concrete equation of the type (3.4) is characterised by a definite matrix Y ( h )  and, 
correspondingly, by a definite form of the time dependence (3.2) of the transition 
matrix. It is easy to prove that transformations (2.14) with matrix B, which is 
independent of t and y ,  conserve the form of the time dependence of the matrix S.  
Hence, they transform the solutions of an equation of the type (3.4) into the solutions of 
the same equation, i.e. these are the usual (auto-) Backlund transformations. The 
group of Backlund transformations contains the group of transformations (2.21) as a 
subgroup. These transformations do not change the diagonal elements of the transition 
matrix (and hence, the Hamiltonian) and, therefore, form an infinite-dimensional group 
of symmetry. It may be shown that the integrals of motion (3.19) are connected just 
with these groups of symmetry. 

We shall refer to the transformations (2.14), which change S,,(A) (i.e. C # B ) ,  as 
Backlund transformations. Similarly to the case N = 2 (Konopelchenko 1979c), the 
infinite Abelian group of Backlund transformations is a direct product &OBd of the 
infinite-dimensional continuous group B, of continual Backlund transformations and 
the infinite discrete group Bd of soliton Backlund transformations. The group Bc 
includes transformations which do not change the number of zeros in the diagonal 
elements of the transition matrix. Soliton Backlund transformations are the trans- 
formations (2.3) changing the number of zeros in S,,(x) and hence adding one or 
several solitons to the initial solution. The structure and properties of Backlund 
transformations for N 3 3 will be considered in considerable detail elsewhere. 

Transformations (2.14) with matrix B, which is dependent on t and (or) y ,  are the 
generalised Backlund transformations (for the case N = 2 see Calogero and Degasperis 
(1976)): they change the form of the time dependence of the matrix S, thereby 
converting into each other the solutions of different (with different Yl and H )  equations 
of the type (3.7). 

Thus we see that the one-parameter groups of time displacements, which generate 
the partial differential equations of the type (3.4), the symmetry groups of these 
equations, the groups of Backlund transformations and generalised Backlund trans- 
formations are subgroups of the infinite group of transformations conserving the 
spectral problem (1.1). 

4. Integrable equations with singular dispersion law; relativistically invariant 
equations 

The matrix Y ( h )  coincides, as is easy to see from equation (3.4), with the dispersion 
matrix of the linearised equation? (as in the case N = 2 (Ablowitz et a1 1974)). For 

t Here and below we shall consider equations with two independent variables x ,  t. 
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entire functions Yl(A) the explicit form of integrable equations is found by direct 
calculation. 

In the case of the singular dispersion law (for example, Y(A)  = (A  - A o ) - " Y )  we 
apply the method proposed in Flaschka and Newell (1975). 

Let us consider the equation of the form 

d P F / a t  +i[P, F]-i(L~--ho)F"[Y,  PI -0  (4.1) 

where n is an arbitrary positive integer. In appendix 1 it is shown that 

Taking into account that 

we have 

(L i -A)- ' [Y ,  P(x,  ~ ) ] = - [ A , ~ I , ( x ,  t , A ) ] .  

Hence 

Thus the equation (4.1) is of the form 

a"-'n(x, t, A ) I  1 
= 0. aPF -+i[P, r]+- [ A  

at ( n  - l ) !  A s h 0  
(4.5) 

By virtue of the singularity of the dispersion law, it is required (for the case of N = 2 see 
Flaschka and Newell (1975)) that 

S,(Ao) = 0. (4.6) 

Therefore 

n(x, t, Ao) = F f ( x ,  t, Ao) YF''(x, t, Ao). (4.7) 

The quantity n(x, t, A )  satisfies an equation whic'n is easily found from the formula 
(Al . l )  and definitions (4.2). It is of the form 

an/ax = ih [A,  II] + i[P, n]. (4.8) 

Solving equation (4.8) with respect to n and substituting into equation (4.5), one can 
find an equation which is satisfied by P(x,  t ) .  

Let us examine the case when n = 1 and A. = 0 in more dethil. We have (since 
[A,  n ~ l  = 0 )  

aPF/at + i[P, r] + i[A, n(x,  t, O ) ]  = 0 ,  (4.9) 

(4.10) an(x, t, o)/ax = i[P(x, t ) ,  n(x, t, O ) ] .  

By virtue of equation (4.7), 

n(x, t, 0 )  = F+(x, t ,  0 )  YFz'(x, t, 0 )  (4.11) 
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and from equation (1.1) 

P(x, t )  = iF'(x, t, 0) aFY1(x, t, O)/dx. (4.12) 

Equation (4.10) is satisfied identically, by virtue of equations (4.11) and (4.12), and 
equation (4.9) is of the form (F+ = Fi(x, t, 0)) 

(4.13) 

Equation (4.13) is invariant under Lorentz transformations x + x' = px, t + t' = p-lx 
(x, t are the cone variables). Alsp it has the invariant group sense where F' belongs to 
the local group G, and iF'8FY /ax = P  belongs to the algebra of the local group G. 

At N = 2  (Po = 0 ,  P21=-P12) equation (4.13) is the sine-Gordon equation 
(Ablowitz et a1 1974, Flaschka and Newel1 1975). For N t 3 it is the generalisation of 
the sine-Gordon equation to an arbitrary group G, and it was considered in Budagov 
and Takhtajan (1977), Budagov (1978) and Zakharov and Mikhailov (1978) for the 
first time. For a full accord with Budagov and Takhtajan (1977) and Budagov (1978) 
one must put F; (x, t, 0)  = u(x, t )  E G: 

In Zakharov and Mikhailov (1978) and Budagov (1978) these equations have been 
shown to be gauge equivalent to the equations of the principal chiral field equations in a 
space of G / H  (where H is the group of diagonal matrices). 

Thus, among the equations integrable by the spectral problem (1.1) there is a broad 
class of relativistically invariant equations (4.14). Backlund transformations for these 
equations are given by relations (2.14) and the conservation laws by formulae (3.17)- 
(3.19) (with P = iu- '  aulax) .  

general linear group GL(N), allows the following natural group reductions: 

U+(X, t ) u ( x ,  t) = 1, A + = A ,  Y'= Y (P+(X, t )  = P(x,  t ) ) ;  (4.15) 

Equation (4.14), which is a generalisation of the sine-Gordon equation to the 

(1) the reduction to the group SU(N): 

(2) the reduction to the group SO(N):  

uT(X, t ) m ( x ,  t )  = 1 (PT (x, t )  = -P(x, t ) ) ;  (4.16) 

and iA and i Y are arbitrary real diagonal matrices; 

UT(X, t)Ju(X, t )  = J, A T  = JAJ, YT = JYJ  (PT = JPJ) (4.17) 

where J is the antisymmetric matrix which may be chosen, for example, in the form 
J = (-? 0') (1 is the unit matrix of the order of N / 2 ) .  

The reductions (4.15) and (4.16) have been also examined in Budagov and Takhta- 
jan (1977) and Budagov (1978). 

The reductions (4.15)-(4.17) also take place for the equations with non-singular 
matrix Y(h). 

For even N the case 

(3) the reduction to the group Sp(N) ( N  is even): 

P = i (  o q  ) A = ( '  O )  
1 0 '  0 -1 ' (4.18) 
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is of interest, where q is the matrix of the order of N/2. Under fulfilment of equation 
(4.18) the linear spectral problem (1.1) is equivalent to the system ($ = (:), U and v have 
N/2 components) 

-a2v /ax2+q(x ,  t ) v  = h 2 v .  (4.19) 

Equations integrable by means of the spectral problem (4.19) have been considered in 
Calogero and Degasperis (1977). 

In the general case and in the reductions (4.15), (4.16) the Hamiltonian structure of 
equations (3.8) will be analysed in the next sections. For the reductions (4.17), (4.18) 
this analysis will be made in a separate paper. 

5. Hamiltonian structure of integrable equations 

It should be mentioned, first of all, that equations (3.8) are gauge equivalent to the 
equations which do not include the term [P, r]. Indeed, let us make the transformation 
4 + 4 = exp[-i Jta dy Po( y ) ] $ .  In this case, the spectral problem (1.1) is transformed 
into the system 

&lax = iAA4 f i& 

where 

=exp(- i I '  --a3 d y ~ D ( y ) ) p F  exp(i / - l d p ~ D ( r ) ) .  

Equation (3.8) is converted into the equation 

aF/at - ia(LIi)[ Y, 151 = o (5.1) 

where the operator 2' is given by formula (3.5),  in which one should make the 
substitution P + (pD = 0). Of course, the results of 
the preceding sections and appendices (with the simplification pD = 0) are true for the 
equations of the form (5.1) and operator L+. 

We are now going to prove that equations (5.1) (which are gauge equivalent to the 
equations (3.8)) are Hamiltonian ones for arbitrary N t .  

Let us first consider the case of the general position and reduction Pf = P. For the 
sake of simplicity, for the non-singular dispersion law let us confine ourselves to 
equations of the form 

(5.2) 

and take into account that pF = 

@/at  - i(L"A)I;c Y, PI = o 

where n is an arbitrary positive integer. 
From equations (A1.13) and (4.2) we have 

[A,  fI(x, t, A ) ]  (A - i;)-'[ Y, P(x,  t ) ] .  (5.3) 

f The Hamiltonian structure of equations (5.1) at N = 2 is analysed in Flaschka and Newel1 (1975) in 
considerable detail. 
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Expanding the left-hand side and right-hand side of equation (5.3) in asymptotic series 
in A-', we find 

Li"[ Y, P(x, t ) ]  = [A,  f I (nC1)(~ ,  t ) ]  

where 

" 1  
n = ~  A 

I?(x, t, A )  - 1 7 fI(")(x, t ) .  

On the other hand, it follows from (2.2) that 
+a2 -+ (mm)  

6 In s",, = -i 

where SF is the arbitrary variation of 

dx 1 6Fkkl% ( m  =1,, , , , N )  
1-a2 k,l S m m  

Hence 

(5.4) 

( 5 . 5 )  

where 8ISP is the variational derivative and Tr denotes the matrix trace. Taking into 
account equations (5.4) and (3.11), we obtain 

(5.7) 

where C'"' is the diagonal matrix of the integrals of motion. 
Hence, equation (5.2) may be written as follows: 

aP/at +[A,  6Hn/6&] = o ( 5 . 8 )  

where H, = Tr( YC(n+l)).  In the case of PD = 0, the analogous result was obtained in 
Newel1 (1979). 

Equation (5.8) is of the form 

aF/at = {F, H,,} (5.9) 
if one gives the following Poisson brackets ( I ( p ) ,  H ( p )  are the scalar functionals): 

+a2 

{I, H }  = 1 dx Tr( -$[ A, SI). 
-a2 

(5.10) 

The quantities and pTR form a pair of canonical (matrix) variables. The results 
obtained here are also valid at P'= P :  the pairs of canonical variables form the 
quantities located symmetrically with respect to the diagonal-they may be considered 
as the independent ones. 

The Poisson bracket (5.10) is not the only bracket corresponding to equation (5.2). 
Similarly to the case when N = 2 (Magri 1978, Kulish and Reiman 1978), the infinite set 
of symplectic structures is associated with equations of the form (5.1). Let us consider 
the following Poisson bracket (for N = 2 see Kulish and 

It is easy to see that equation (5.2) is of the form 

aF/at = {P, H ~ - ~ } ~  

Reiman (1978)): 

(5.11) 

(5.12) 
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where m is an arbitrary integer. Hence, the infinite set of Hamiltonian-Poisson bracket 
pairs corresponds to the concrete equation of the form (5.2). 

Let us prove the Hamiltonian structure of equations (5.1) with SZ = (A - A&". From 
the relation (5.3) we have 

a"-'fi(x, t, A ) /  ] 
ah "-I h = h o  

(L"; - Ao)-"[  Y, p ]  = - [A, 
(n - l)! 

Taking into account equations (5.6),  we find 

(5.13) 

(5.14) 

Thus, equations (5.1) with SZ = (A -AO)-", which are gauge equivalent to equations 
(4.1), are Hamiltonian ones with the Poisson bracket (5.10) and I-Tamiltonian 

(5.15) 

In particular, equations (5.1) with a= A-', which are gauge equivalent to the 
generalisations of the sine-Gordon equation to the groups GL(N) and SU(N) (see 
8 4) t ,  are Hamiltonian equations. The Hamiltonian of these equations is of the form 

(5.16) H = Tr[ Y In SD(0)].  

Expression (5.16) may be transformed as follows. From the relation (2.2) we have 
+m 

3 - 1 = -i dx exp(-iAAx)P(x, t)l.'+(x, t, A ) .  (5.17) I_, 
Hence 

In SD(0)  = ln[l -&(x = +CO, t, O ) + & ( X  = --CO, t, 011. (5.18) 

Thus the Hamiltonian (5.16) is 

H=Tr{Yln[l+u"L1(x =-co,t)-CG'(x=+co, t ) ] }  (5.19) 

where C ( x ,  t )  = l.';'(x, t, 0). 
In the combined cases when Y(A) contains the singular and regular parts, the 

Hamiltonian structure of the equations is proved in a similar way. 
It should be mentioned that the integrals of motion C'"' (n = 1,2 ,  . . .) of equations 

of the form ( 5 , l )  are connected with the form invariance of these equations with respect 
to the transformations which in the infinitesimal form are the following: 

where E is the diagonal matrix (of the order of N )  of parameters. 

+ T h e  Hamiltonian structure of equations (4.14) under the group SU(2) was proved in Zakharov a j d  
Mikhailov (1978). In our work N is arbitrary. Note also that the transformation P+P= 
exp(-iR)PF exp(iR) (R = 51, dy Po( y ) ) ,  for equations (4.14), which, as we have seen, is the gauge trans- 
formation, has been considered in Budagov (1978). 
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6. The structure of equations at PT = -P 

In this case, not all the variables Pkl are dynamically independent. For this reason, the 
analysis of the foregoing sections should be modified. 

Let us introduce the upper triangular matrix Q with zeros along the diagonal, such 
that 

i.e. 
P = Q - Q T ,  (6.1) 

Q k i  = p k l  

Q k i  = 0 

for 1 > k, 
for 1 < k. 

Now, let us transform equations (3.8) in such a way that they contain only the 

To this end, we return to equations (2.7). They may be written for B = 1 - ie Y and 
independent dynamical variables Q t. 

PI= P+ e aP/at (see (3.1)-(3.4)) in the following form (pi;)= ( F ' j i k ( F + ) l , , ) :  

++ 

Substituting the definition (6.1) into equation (6.2) and using the properties of the trace, 
we obtain 

Then let us introduce the projection operations A+ and A-: 

for 1 > k, 
f o r l < k ,  

for 1 > k, 
for 1 < k, 

(6.4) 

where Z is an arbitrary matrix with zeros along the diagonal. It is clear that 2 = 

equivalent to the following: 
ZA+ +ZA_, ZA-tA* = ZA*. Since Qa+ = 0, QTA, = 0,  QTA- = QT, equation (6.3) :Is 

where Sl, = qF + ( P ~ ,  ,y = (PF - pn. Equation (6.5) already contains the independent 
variables only. Hence, the transition from equation (6.2) to equation (6.5) is the 
projection onto the subspace of independent dynamical variables. 

The first term of equation (6.5) can be converted into the form which contains $A+ 

instead of xA+. Let us define the quantity W(x, t )  by the relation 

a Q / d t  = Di+ W (6.6) 

D+ = d/dx - i[Q - QT, *IF + i[Q - QT, ]m. (6.7) 

where D' is the 'covariant' derivative: 

t The results of this section are true for the more general case of equations (3.4). 
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Taking inLv account that aQT/at  = D:- WT, integrating by parts and using formula 
(A2.6), we find (assuming W(x = -CO) = 0) 

As a result, equation (6.5) is of the form 
+CO ++ ++ 

dx Tr(WT[A, $Y;]--[Y, Q ] T w ( A ~ ) $ ~ ~ ) = O  ( i # n )  (6.9) 

whe.e we put n(A) = h w ( h 2 ) ,  because for PT = -P O(A) should be the antisymmetric 
function A.  

In appendix 2 it is shown that the following relation holds in the subspace stretched 

J L  

++ 
over $2’: 

++ ++ 
( i  # n )  ( i n )  = 2 ( i n )  L i ? ” , k A +  A $ A +  (6.10) 

where 

Therefore, equation (6.9) may be written as 

J-CO 

Finally, making the transition from the operator Li:’ to the adjoint operator LL:)’ and 
taking into account the equality Tr( WT[A, CL&+]) = T r ( $ = d A ,  W ] ) ,  we obtain 

(6.13) 

where 

Equality (6.13) is satisfied if 

[A,  W ]  - w (LIp,g)[ Y, Q] = 0. 

def 
Using (6.6), we obtain the following differential equations ( D  = D+):  

a Q / a t  - Da+oR(L(hQ,k+)[ Y, Q ]  = 0.  (6.15) 

There is no difficulty in seeing that equation (6.15), which contains Q only, is equivalent 
to equation (3.8) for Pr =.-I? At N = 2 D = d/ax and equation (6.15) coincides with 
equations considered in Flaschka and Newel1 (1975). 

For singular functions w ( h 2 )  of the type 

w ( ~ ~ ) = ( ~ ~ - ~ . 2 0 ) - ~  (6.16) 
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we use the analogue of formula (4.3), which in our case is of the form (see appendix 2) 

-4 
where 

Hence 

Thus the equations with the dispersion law (6.16) are of the form 

1 =o.  1 a n - ' ( & ( X ,  t, A ) / A )  aQ+ DA+ a ( A 2 ) n - 1  at 2(n - I ) !  A = h a  

(6.18) 

(6.19) 

(6.20) 

7. The Hamiltonian structure of equations for PT = -P 

Equations of the type (6.15) contain only the dynamical independent quantities and 
admit the natural Hamiltonian structure. 

Let us first consider the equations of the form 

From equation (2.2) (see also ( 5 . 5 ) )  we have 

6 In Sm, = -i 1-r dx Tr( Q T A -  

-+ 
( m m )  

Smm 
Hence 

(7.2) 

(7.3) 

Expanding the left- and right-hand parts of equation (6.17) in an asymptotic series in 
A -', we find 

(Liyk+)"[ Y, Q] = -$[A, ng""']. 
Taking into account equations (7.3) and (3.11), we obtain 

i s 
2 SQ 

(LA+R (Q)+ ) a [ Y, Q] = --[A, - Tr( YC(Zfl+l) 

Hence equation (7.1) may be written as follows: 

(7.4) 

It is obvious that equation (7.5) is a Hamiltonian one. The Poisson bracket is of the 
form 



1254 B G Konopelchenko 

and the Hamiltonian is equal to 
H, 1= $ Tr( y~(Zn-'l)). 

It is clear that for the equation 

aQ/at - i D A + w R  (LL:p,k')[ y, a]= 0 

(7.7) 

(7.8) 

where w(A2) = X m  W ~ ( A ' ) ~ ,  the Hamiltonian €Jw is equal to 

(7.9) 
a ) *  Hu = $ Tr( Y c w ~ C ( ' ~ + ~ )  

Just as in the case of the general situation (see § 5), the infinite number of Hamiltonian- 
Poisson bracket pairs is connected with the equations of the form (7.8). 

Let us proceed now to the equations with the singular dispersion law. Let us prove 
the Hamiltonian structure of the equation 

(7.10) aQ/at -DA+(L!,:k')i1[ Y, Q] = 0. 

The case w = (A')-" is analysed in a similar way. From equation (6.17) we have that 

By virtue of equation (7.3), 

Hence equation (7.10) is of the form 

aQ/at = {Q, HI 

where 

and the Poisson bracket is given by formula (7.6). 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

I t  is easy to prove that equation (7.10) is equiva,;nt to the SO(N)-Gordon equation 
(the sine-Gordon equation under the group SO(N))  which has been considered in 8 4.  
Indeed, taking into account (by virtue of SF(A = 0) = 0) that 

N ++ 
n,= Y,i",) 

m=l  

and using (A2.4), we find 

aQ/at +%[A, n T A +  + nA,l= o (7.15) 

where lI is given by formula (4.7). Transposing (7.15) and subtracting the resulting 
equation from (7.15), we derive equation (4.9) where P = Q - QT. 

Thus we have shown that the SO(N)-Gordon equation at arbitrary N is a Hamil- 
tonian one with the Poisson bracket (7.6). Let us reduce the Hamiltonian (7.14) of this 
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equation to a more explicit form. For this purpose, we use the identity 

iF"(x, t, A)AF+(x, t, A )  - iAS = 
ax (7.16) 

which is obtained directly from (1.1). 
We find from equation (7.16) that 

a -1 1 - In S,, = -i I-: dx ( ( F -  AF+),, -- Amm) 
ah S m m  

Hence (taking into account that S,-(A = 0) = 0) 

( m  = 1,. . . , N ) .  (7.17) 

i N  a 
H = -  1 Ym-lnS,,(0) 

2m=1 ah 
+X 

= & [ dx Tr(AF+(x, t, 0) YF-'(x, t, 0) --AY). 
J..m 

Denoting FZ1(x, t, 0) = u(x, 1 )  (see 8 4), we have 
+m 

H = I dx Tr(AuTYu --AY).  
-m 

(7.18) 

(7.19) 

In this notation 

Q = i(uT au/ax)a+. (7.20) 

As we have already noted, the Hamiltonian structure of the S0(3)-Gordon equation 
has been proved in Budagov and Takhtajan (1977) and Budagov (1978). The Hamil- 
tonian in those papers coincides (with an accuracy of the transition to cone variables) 
with the Hamiltonian (7.19). However, the canonical variables are different. In 
Budagov and Takhtajan (1977) and Budagov (1978), the canonical variables are 
natural coordinates of the local group SO(3). In our case (as is seen from equation 
(7.20)), the natural coordinates in the local algebra SOW) play the role of canonical 
coordinates. The situation for the GL(N)-Gordon and SU(N)-Gordon equations is 
similar (see 8 5 ) .  

Note that by virtue of the gauge equivalence of the G-Gordon equations to the 
equations of the principal chiral field over the space of flags (Budagov 1978, Zakharov 
and Mikhailov 1978), the latter are Hamiltonian ones. 

In conclusion, it should be mentioned that the Lagrangian structure of some 
equations connected with the principal chiral field, namely the four-fermion type 
equations, has been proved in Zakharov and Mikhailov (1980). 
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Appendix 1. 

In this appendix we shall obtain some relations which include the quantities 4:;) = 

(+-l)ik(+f)ln and integro-differential operators A, A', L, Lt. 



where 

~ ( x )  = exp( i dy (pD( Y )  - PL( V I ) ) .  

Following from the asymptotic properties of F+ and F-,  we obtain 

(A1.5) 

From equations ( A l . l ) ,  (A1.3), and (A1.5) we obtain 

A$g)==h[A, ~ ~ ' ] + P T F ( x ) A ( + ~ ) A - ' ( x )  8"' - A ( + a ) A - ' ( x )  8" PSF(X) 

where 

++ -+ ++ ++ 
(A1.6) 

In particular, 
++ C i  

i14 g)  = A [A, 4 ( i  # n )  (A1.8) 

i.e. 

(A1.9) 
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There is no difficulty in seeing that for the operator 

L + .  = A+(P' = P )  = -i a/ax - [P(x  1, lF  - i[ pF (x 1, I_: d y [PF ( y ), I D ]  
def 

( A l .  10) 

-+ 
the following relation holds (cp!;' = (F'*)ik(F+)ln): 

(Al.11) 

Hence 

-+ 
where (8"" ) tb = 8kn. 

Multiplying the equality (A1.12) by Y, and summing over n, we obtain 

(A1.13) 

Appendix 2. 

Let us consider equation (A1.6) at P' = P and PT = -P = - ( Q - Q T ) .  We use the 

following notation: pi;' = (F*-')ik(F+)ln and ~ l ,  = cpF + qFT, x = cpF - qFT. It is easy to 

prove that (for cp = c p )  

*+ 

++ 

i axlax + [Q - QT, X I F  = A [ A ,  $1. 
(A2.1) 

(A2.2) 

Let us apply the operation A+ to equations (A2.1) and (A2.2). We have the following 
result: 

i a + ~ + l a x  + [Q - QT, $ A + ~ F A +  + [Q - QT, $ A + l T F A +  

(A2.3) 

i axa+/ax + [Q - QT, XA+IFA+ - [Q - QT, XA+ITFA+ = A [A,  +A+]. (A2.4) 

In expressions of the type ZTFA+,,, the operations are performed from left to right. Note 
also some obvious but useful properties in calculations: operations T, F, D commute 
with each other; TA+ = A-T; [PA*, ZAJa, = 0; for the symmetric matrix cp we have 
cp = pa+ + cpA+T, for the antisymmetric one x, x = XA, -XA+T and so on. 

D* * = a/ax -i[Q - QT, I F  * i[Q - QT, * ] T F .  

Let us introduce the 'covariant' derivatives D-, D': 

(A2.5) 
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Then equation (A2.4) is of the form 

iDi+xa, = A [A ,  $A+]. (A2.6) 

Applying the operation R to equation (A2.3), acting on the resulting equation Di+ and 
taking into account (A2.6), we find 

(A2.7) 

where 

Hence 
++ ++ 

( i  # n ) .  (Q) (in) - 2 ( i n )  LA+R$L - A  $ A +  (A2.9) 

-- + -+ 
Equations for and xa+ are the following: 

-- + -+ 
iDi+xy: = A [A,  $y+)]. 

With the use of equations (A2.10) and (A2.11) we obtain 

-Di+Di+RX(;1)-2[ Q ( X ) ,  1-L dy [a - QT, ni+~X'i;:']~] 
-+ -+ 

- +  -+ 
= A 2[A,  xy;] - 2A [Q, 6 Im 1. 

(A2.11) 

(A2.12) 

Comparison of the left-hand side of equation (A2.12) and equation (6.14) gives 

Hence 

(L(aQ,k+ - A  *)[A,  ~ Q ( x ,  t, A ) ]  = 2A [ Y, Q]. 
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